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Abstract: Fine particulate matter is associated with adverse health outcomes. Exposure to fine
particulate matter may disproportionately affect urban communities with larger numbers of
vulnerable residents. We used multilevel logistic regression models to estimate the joint effects
of fine particulate matter (PM2.5) and population vulnerabilities on cardiopulmonary mortality
(CPM). We estimated the health benefits of reductions in PM2.5 across census tracts in the Detroit
metropolitan area with varying levels of population vulnerability, using cluster-specific odds ratios
scaled to reflect PM2.5-attributable cardiopulmonary risk. PM2.5 and population vulnerability were
independently associated with odds of CPM. Odds of CPM and the number of deaths attributable to
PM2.5 were greatest in census tracts with both high PM2.5 exposures and population vulnerability.
Reducing PM2.5 in census tracts with high PM2.5 would lead to an estimated 18% annual reduction in
PM2.5-attributable CPM. Between 78–79% of those reductions in CPM would occur within census
tracts with high population vulnerabilities. These health benefits of reductions in PM2.5 occurred at
levels below current U.S. reference concentrations. Focusing efforts to reduce PM2.5 in the Detroit
metropolitan area in census tracts with currently high levels would also lead to greater benefits for
residents of census tracts with high population vulnerabilities.

Keywords: fine particulate matter; cardiopulmonary risk; population vulnerability; cumulative risk

1. Introduction

Exposure to ambient air pollution is associated with increased risk of multiple adverse
health outcomes, including cardiovascular mortality [1–3], respiratory hospitalization [4], asthma
exacerbation [5–7], incidence and duration of respiratory symptoms [8,9], declines in lung function [10–12],
preterm delivery and low birth weights [13–15], and restricted activity [16,17]. Evidence suggests that
fine particulate matter (PM2.5) is more strongly associated with morbidity and mortality than coarse
particulate matter (PM10) [18], with adverse health effects observed at pollution levels below current
U.S. National Ambient Air Quality Standards (NAAQS) and common to many U.S. cities [19,20].
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There is substantial evidence that non-Hispanic Black (NHB) and Hispanic communities, and
those with low to moderate incomes, are disproportionately exposed to air pollutants [21–24].
NHBs and Hispanics are also more likely to reside in urban communities with reduced access to
quality education and employment opportunities [25,26]. A sizeable literature documents increased
vulnerability of residents of low to moderate income urban communities and communities with
greater race-based residential segregation to air pollution and associated health risks [21,27–29].
Low to moderate economic status contributes to challenges avoiding exposure and may exacerbate
adverse health effects of exposures [30] through mechanisms including, for example, poorer quality
housing [31,32] or reduced access to health care [33]. Children and older adults are more susceptible
to adverse health effects of exposure [34–38]. Yet, relatively few studies have examined combined
effects of exposure to air pollution in conjunction with population vulnerabilities, or quantified
the health impacts associated with reductions in air pollution in communities as these may vary
with characteristics of exposed populations. Using data from the Detroit metropolitan area (DMA),
we examine the independent and joint contributions of air pollution exposure and population
vulnerabilities to cardiopulmonary mortality and estimate the number of deaths averted by focusing
efforts on places with varying constellations of characteristics.

The Detroit metropolitan area (DMA), comprised of Macomb, Oakland, and Wayne Counties,
is among the most racially segregated regions in the nation [39]. Historically, numerous factors
contributed to this segregation, including restrictive agreements prominent prior to 1948 that prohibited
racial and ethnic groups from living in parts of the city of Detroit [40]. Continued discrimination in
the real estate market, including federally-backed home mortgages available to non-Hispanic Whites
(NHWs) but not NHBs, perpetuated segregation and reduced NHBs’ access to suburban employment
opportunities [40,41]. Today’s DMA reflects these historical and contemporary processes (see Figure 1),
with NHB populations in Wayne, Oakland, and Macomb counties clustered in urban communities [42].
Eighty-five percent of Wayne County’s NHB population is located in Detroit city [42], also home to an
Hispanic community whose roots extend back nearly a century [43]. NHBs and Hispanics across the
DMA are disproportionately represented in households below the federal poverty line [44]. Over 57%
of Detroit’s children [45,46], compared to 37%, 20%, and 13% of children in Wayne, Macomb, and
Oakland counties, respectively, live in households below the poverty line [42].

Segregation contributes to health inequities through economic divestment, limited educational
and employment opportunities, as well as foreclosure risk in racially segregated urban
communities [34,40,47–49].

Segregation may also contribute to unequal exposure to air pollution. For example, in the DMA,
census tracts with greater concentrations of NHB and Hispanic residents, households below the
poverty line, and residents who have not completed high school are more likely to have higher levels of
exposure to diesel PM (a component of PM2.5) and associated cancer and respiratory health risks [22].
This study extends previous research by examining the independent and joint effects attributable to fine
particulate matter (PM2.5) and population vulnerabilities on three health outcomes previously found
to be associated with air pollution: mortality attributable to ischemic heart disease [1,2], cardiovascular
disease [1,50], and cardiopulmonary disease [3]. In addition, it quantifies the health impacts of
reductions in PM2.5 in communities with high and low population vulnerability scores.
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Figure 1. Proportion of persons of color at the census tract level, Detroit metropolitan area. 

2. Materials and Methods 

The study was conducted as part of Community Action to Promote Healthy Environments, a 
community-based participatory research partnership designed to equitably engage community, 
academic, and health service provider organizations in research, and aid the translation of results 
from that research into action to promote health equity (see Acknowledgments). The University of 
Michigan granted institutional review board approval for this study on 24 January, 2013. 

2.1. Data 

Data for the analyses described below were drawn from multiple sources, informed by methods 
developed by a California-based team [30,51]. Information on fine particulate matter was drawn 
from the EPA’s National-Scale Fused Air Quality Surfaces Using Downscaling Tool and the 
Community Multiscale Air Quality (CMAQ) model, for the calendar year 2013. The downscaler 
model combines air quality monitoring and modeling data to provide better fine-scale predictions of 
air pollutant levels at local and community scales, and is downloadable from the EPA website [52–
54]. Demographic data were drawn from the 2009–2013 American Community Survey [55]. 
Mortality data were provided by the Michigan Department of Health and Human Services 
(MDHHS) and include records of all deaths that occurred in the Detroit metropolitan area (Wayne, 
Oakland, and Macomb Counties) in 2013. 

2.2. Measures 

Dependent variables include ischemic heart disease mortality, cardiovascular mortality, and 
cardiopulmonary mortality, coded using the following ICD-10 codes: Ischemic heart disease, I20–I25 
[56]; cardiovascular, I10–I70 [56]; and cardiopulmonary, I10–I70 and J00–J99 [56]. Mortality was coded as 
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2. Materials and Methods

The study was conducted as part of Community Action to Promote Healthy Environments,
a community-based participatory research partnership designed to equitably engage community,
academic, and health service provider organizations in research, and aid the translation of results from
that research into action to promote health equity (see Acknowledgments). The University of Michigan
granted institutional review board approval for this study on 24 January 2013.

2.1. Data

Data for the analyses described below were drawn from multiple sources, informed by methods
developed by a California-based team [30,51]. Information on fine particulate matter was drawn from
the EPA’s National-Scale Fused Air Quality Surfaces Using Downscaling Tool and the Community
Multiscale Air Quality (CMAQ) model, for the calendar year 2013. The downscaler model combines
air quality monitoring and modeling data to provide better fine-scale predictions of air pollutant levels
at local and community scales, and is downloadable from the EPA website [52–54]. Demographic data
were drawn from the 2009–2013 American Community Survey [55]. Mortality data were provided by
the Michigan Department of Health and Human Services (MDHHS) and include records of all deaths
that occurred in the Detroit metropolitan area (Wayne, Oakland, and Macomb Counties) in 2013.

2.2. Measures

Dependent variables include ischemic heart disease mortality, cardiovascular mortality, and
cardiopulmonary mortality, coded using the following ICD-10 codes: Ischemic heart disease,
I20–I25 [56]; cardiovascular, I10–I70 [56]; and cardiopulmonary, I10–I70 and J00–J99 [56]. Mortality was
coded as a dichotomous measure (i.e., ‘1’ if cause of death was ischemic heart disease, cardiovascular
disease, or cardiopulmonary disease, respectively), and geocoded to individuals’ residential addresses.
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Census tract level-independent variables include census tract PM2.5 concentrations and social,
economic, and age-related vulnerabilities [30,51]. A base map was constructed that indicates residential
areas and land uses where sensitive populations may be present (e.g., child care facilities, health care
facilities, schools). Strictly industrial or commercial areas are not included. Areas (polygons) are
roughly the size of a city block. The base map geographically links residential and sensitive land
use polygons with census tract-level metrics in each of the categories of exposure and population
vulnerability described below, to create a risk score for each polygon. As described below, the risk score
is used to rank neighborhoods according to their level of risk (e.g., PM2.5 concentration, population
vulnerability) across categories. Polygons are aggregated to the census tract level for this analysis.

The PM2.5 concentration measure was calculated at the census tract level, using annual averages.
Measures were weighted by the proportion of the census tract that was residential or sensitive land
use. Scores were calculated based on quintile distribution rankings, ranging from 1 (low) to 5 (high),
and applied to each tract in the study area.

The vulnerability index includes the following indicators associated with increased vulnerability
to environmental exposures, calculated at the census tract level [27,29,30,51,57]: percent of households
below poverty; median home value (reverse coded); percent of homes occupied by renters; percent of
population aged >24 years with a less than high-school-level of education (<high school); linguistic
isolation (percent of residents who live in households with no adults who speak English); percent
people of color; percent of population aged <5 years; and percent population aged ≥60 years.
Census tracts were rank-ordered based on their scores for each of the above items and scored as
quintiles from 1 (low) to 5 (high). The scores for each item were then summed, using equal weights,
to create a cumulative vulnerability index reflecting population vulnerability across all included
dimensions at the census tract level. Census tracts were once again rank-ordered based on these
cumulative scores and divided into quintiles to create the vulnerability index score, ranging from
1 (low) to 5 (high).

Individual level control variables include age (continuous); gender (male = referent); race/ethnicity
(NHB, Hispanic, NHW (referent)); education (<high school, high school graduation, >high school
(referent)); marital status (not currently married (referent)); and whether the cause of death was coded on
the death certificate as related to tobacco use (yes, likely, no (referent)).

2.3. Analysis

We used multilevel, multivariate, longitudinal analyses with indicators of mortality for 2013.
The use of hierarchical linear models accounts for the longitudinal nature of the data (e.g., mortality
over a one-year period), accommodating changes over time in mortality patterns and providing
unbiased estimates of exposure effects. Separate models were run using ischemic heart disease,
cardiovascular, and cardiopulmonary disease mortality as dependent variables. Predictor variables
were grand mean centered, the logit link was used, and an exchangeable correlation matrix was used
to estimate standard errors.

Random intercept only multilevel logistic models were used to assess the independent and
joint associations between PM2.5 exposure and the vulnerability index at the census tract level with
each indicator of mortality at the individual level. Models examine dynamic exposure–response
relationships between exposures and each dependent variable (e.g., cardiopulmonary mortality).
For each dependent variable, models examined effects of PM2.5 exposure and vulnerabilities, each
alone, and the joint effects of the two components when included together in a model, controlling for
age, gender, race, and ethnicity. We also ran models with PM2.5 concentration and each individual
indicator included in the vulnerability index (e.g., percent of households below the poverty line).
In testing joint effects, we considered multiplicative models assessing interactions between PM2.5 and
vulnerability. Interaction terms were not statistically significant (p < 0.05), and thus the final models
reported in this paper do not include interaction terms. To assess the sensitivity of models to varying
specifications of the variables, we ran models using the rank-ordered quintile versions of each variable
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as described above and using continuous versions of each variable. Patterns were similar: findings
are reported using the rank-ordered quintile versions, with statistical significance reported as p < 0.05,
p < 0.01, and p < 0.001.

Finally, we estimated the health impact of reductions in PM2.5 in the DMA on mortality rates
attributable to this exposure. To do this, we converted the original five-point scale for each index to a
dichotomous variable: census tracts falling in quintiles 1–2 were collapsed and coded as “low” and
those in quintiles 3–5 were collapsed and coded as “high” census tracts. We calculated odds ratios for
each level (high, low) using standard statistical methods [58,59], then calculated odds ratios for each of
four resulting clusters—combinations of PM2.5 and population vulnerability (Cluster 1 = low/low;
Cluster 2 = low/high; Cluster 3 = high/low; and Cluster 4 = high/high)—by multiplying odds
ratios for their respective components. Odds ratios were then scaled to reflect PM2.5-attributable
cardiopulmonary mortality risk. Based on estimates previously reported in the literature and
recognizing geospatial variations in attributable risk, we estimated reductions in cardiopulmonary
mortality using 3%, 5%, 10%, and 15% PM2.5-attributable risk [16,58–61]. Resulting odds ratios were
multiplied by the total population in respective clusters to calculate the number of deaths due to
ischemic heart disease, cardiovascular disease, and cardiopulmonary disease that would be averted
under each of the above scenarios. All analyses were performed using HLM 7.03 for Windows
(HLM 7.03 Scientific Software International (SSI), Stokie, IL, USA).

3. Results

Table 1 shows descriptive statistics for each of the indicators included in the CI. Mean PM2.5 for
census tracts in the DMA is 9.6 µg/m3 (SD = 0.3). For indicators of population vulnerability, on average
at the census tracts level, about two-fifths of the population were of color, one in ten households had
incomes below the poverty line, and about one-third of households were occupied by renters. Also, at
the census tract level, on average, one in eight residents had less than a high school education level
and about one in twenty residents were linguistically isolated. The average census tract had about one
in 15 residents under the age of five and about one in five aged 60 or older. At the census tract level,
on average, about one-fifth of deaths were attributable to ischemic heart disease, about one-third to
cardiovascular disease, and just over four in 10 were attributable to cardiopulmonary causes.

Table 1. Descriptive statistics for individual and census tract level indicators, Detroit metropolitan area.

Individual Level (n = 171,000) Percent Mean (SD) Range

Demographics

Age 72.6 (18.7) (0.0, 99.2)
Gender (Female = 1) 51.2

Race/ethnicity
Hispanic 1.4
Non-Hispanic White 71.9
Non-Hispanic Black 25.6
Non-Hispanic Other 1.1

Education Attainment
Less than high school 17.3
High school 29.1
More than high school 17.2
Not reported 36.4

Married 33.6

Smoking behavior
Yes 7.4
No 36.1
Probable 5.7
Not reported 50.8
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Table 1. Cont.

Individual Level (n = 171,000) Percent Mean (SD) Range

Mortality rates

Ischemic heart 19.3
Cardiovascular 34.3
Cardiopulmonary 42.7

Tract Level (n = 1166)

Pollution Exposure

PM2.5 (µg/m3) 9.6 (0.3) (8.9, 10.0)

Vulnerability (mean percent at the tract level)

Percent people of color 40.3 (35.4) (0.0, 100)
Percent households living below poverty line 19.9 (16.9) (0.0, 100)
Median home value (in thousands) 121.5 (87.1) (10.0, 761.3)
Percent renter-occupied housing 30.9 (20.9) (0.0, 100)
Percent aged ≥24 with <high school diploma 13.7 (10.2) (0.0, 61.7)
Percent linguistically isolated 0.4 (1.1) (0.0, 9.7)
Percent aged <5 5.8 (2.7) (0.0, 17.8)
Percent aged ≥60 19.9 (6.8) (0.0, 57.5)

Table 2 presents results from analyses examining the first research question: what are the
associations between PM2.5 and population vulnerability and each of the three mortality indicators?
Odds ratios were significantly greater for those residing in census tracts with the higher exposure
quintiles. Specifically, as shown in Model 1, likelihood of death due to ischemic heart disease was
significantly greater in census tracts ranked in the third (p = 0.01), fourth (p = 0.004), and fifth (p < 0.001)
quintiles compared to the first. Likelihood of death due to cardiovascular disease was significantly
greater for those in census tracts in the fifth quintile (p = 0.01), and deaths attributed to cardiopulmonary
disease were more likely in the third (p = 0.07), fourth (p < 0.001), and fifth (p < 0.001) quintiles compared
to those in the lowest exposure quintile.

Table 2. Mortality due to ischemic heart disease, cardiovascular disease, and cardiopulmonary disease,
respectively, regressed on PM2.5 and cumulative vulnerability, adjusted for individual characteristics 1.

Tract Level
Predictors Ischemic Health Disease Cardiovascular Cardiopulmonary

Model 1 Model 2 Model 1 Model 2 Model 1 Model 2

PM2.5 (1 = low) OR 2 (95% CI) OR (95% CI) OR (95% CI) OR (95% CI) OR (95% CI) OR (95% CI)
2 1.06 (0.95, 1.19) 1.00 (0.92, 1.08) 0.98 (0.90, 1.07)
3 1.17 (1.05, 1.31) b 1.03 (0.95, 1.12) 1.08 (0.99, 1.18) †

4 1.19 (1.06, 1.34) b 1.08 (0.99, 1.18) 1.18 (1.08, 1.29) c

5 1.31 (1.16, 1.48) c 1.14 (1.03, 1.26) b 1.22 (1.11, 1.34) c

Vulnerability
(1 = low)

2 1.06 (0.94,1.19) 1.10 (1.01, 1.19) a 1.09 (1.00, 1.19)
3 1.12 (1.00,1.26) a 1.16 (1.07, 1.26) c 1.19 (1.09, 1.29) c

4 1.17 (1.04,1.31) b 1.17 (1.07, 1.27) c 1.22 (1.12, 1.33) c

5 1.24 (1.09,1.42) c 1.16 (1.05, 1.29) b 1.23 (1.11, 1.35) c

1 Models were adjusted by age, gender, race/ethnicity (NHB, Hispanic, NHW), educational attainment (less than
high school, high school, more than high school), death attributable to smoking (yes, probably, no), and marital
status. a p < 0.05. b p < 0.01, c p < 0.001. † p = 0.07. 2 OR= Odds Ratio.

Similarly, as shown in Table 2, in Model 2, odds ratios of ischemic heart disease were significantly
higher for those living in census tracts in the third (p = 0.05), fourth (p = 0.01), and fifth (p < 0.001)
quintiles of population vulnerability, compared to those in the lowest vulnerability census tracts.
For cardiovascular disease, likelihood of mortality was significantly higher for those in the second
(p = 0.04), third (p < 0.001), fourth (p < 0.001), and fifth (p = 0.01) quintiles of vulnerability; and
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likelihood of mortality due to cardiopulmonary disease was significantly higher in the third (p < 0.001),
fourth (p < 0.001), and fifth (p < 0.001) quintiles of population vulnerability.

Because census tracts with greater population vulnerability scores have been previously
demonstrated to have higher air pollutant exposures [22], our third research question assessed
joint contributions of PM2.5 exposure and population vulnerabilities. Results are shown in Table 3.
After accounting for population vulnerabilities, effects of PM2.5 on mortality remained significantly
higher for ischemic heart disease in the third (p = 0.02), fourth (p = 0.03), and fifth (p < 0.001) quintiles
of PM2.5 exposure, and for cardiopulmonary disease in census tracts, in the fourth (p = 0.03) and fifth
(p = 0.01) quintiles of PM2.5 exposure.

Table 3. Mortality due to ischemic heart disease, cardiovascular disease, and cardiopulmonary disease
regressed on PM2.5 and population vulnerability at the census tract level, adjusted for individual
demographic characteristics 1.

Quintile

Ischemic Heart

Disease Cardiovascular Cardiopulmonary

OR (95% CI) OR (95% CI) OR (95% CI)

PM2.5 (1 = low, 5 = high)

1 ref ref ref
2 1.04 (0.92, 1.17) 0.95 (0.87, 1.04) 0.94 (0.86, 1.03)
3 1.15 (1.02, 1.29) a 0.99 (0.91, 1.08) 1.03 (0.94, 1.13)
4 1.15 (1.02, 1.31) a 1.02 (0.93, 1.13) 1.11 (1.01, 1.23) a

5 1.24 (1.08, 1.42) c 1.10 (0.98, 1.22) 1.15 (1.04, 1.28) b

Vulnerability (1 = low, 5 = high)

1 ref ref ref
2 1.03 (0.91, 1.16) 1.10 (1.00, 1.20) a 1.08 (0.98, 1.18)
3 1.07 (0.95, 1.21) 1.16 (1.06, 1.27) c 1.17 (1.07, 1.28) c

4 1.09 (0.96, 1.24) 1.15 (1.05, 1.26) c 1.19 (1.08, 1.30) c

5 1.13 (0.98, 1.31) 1.11 (0.99, 1.24) † 1.15 (1.03, 1.28) b

1 Adjusted by age, gender (ref = female), race, and ethnicity (NHB, Hispanic, NHW), educational attainment (less
then high school, high school (ref) and more than high school), mortality linked to smoking (yes, probable, no (ref))
and marital status. Ranks for PM2.5: 1 = (0.892–0.944); 2 = (0.945–0.964); 3 = (0.965–9.74); 4 = (0.975–0.982); and
5 = (0.983+). Ranks for vulnerability index: 1 = (0–16); 2 = (16.1–21.5); 3 = (21.6–25.5); 4 = (25.6–31); and 5 = (31.1+). 2

PM2.5 was standardized by 10. a p < 0.05, b p < 0.01, c p < 0.001. † p = 0.07.

Similarly, after including PM2.5 in the models, odds ratios for cardiovascular disease remained
significantly higher in the second (p = 0.04), third (p = 0.001), and fourth (p = 0.001) and approached
significance in the fifth (p = 0.07) quintiles of vulnerability, and for cardiopulmonary disease, in the
third (p < 0.001), fourth (p < 0.001), and fifth (p < 0.001) quintiles of vulnerability, compared with
census tracts with the lowest vulnerability scores. Models using continuous versions of PM2.5 and
the population vulnerability index yielded similar results (see Supplementary Materials Table S1).
Models testing for potential modifications of effects of PM2.5 by population vulnerabilities found no
significant interactions for any of our three dependent variables (results not shown).

Table 4 shows the population of the DMA living in census tracts within each of four
clusters: low population vulnerability/low PM2.5; low population vulnerability/high PM2.5; high
population vulnerability/low PM2.5; and high population vulnerability/high PM2.5 concentration.
An estimated 1,659,342 (39%) residents of the Detroit metropolitan area live in census tracts with
both high PM2.5 concentrations and high vulnerability, with 50% (2400 of 4800) of estimated total
cardiopulmonary mortality occurring in census tracts with those characteristics (Table 4). We calculated
PM2.5-attributable scaled odds ratios for each of the four clusters. Results from tests of contrasts indicate
that residents of census tracts with high vulnerability and high PM2.5 concentrations experience
significantly greater probability of cardiopulmonary mortality compared with residents of the other
three clusters (p < 0.001) (full calculations are shown in Supplementary Materials Table S2).

Also shown in Table 4, reductions in PM2.5 in census tracts with high PM2.5 concentrations
to levels currently experienced in the low concentration census tracts would avert an estimated 15
to 75 PM2.5-attributable cardiopulmonary deaths each year in census tracts with high population
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vulnerability. An additional 4–20 PM2.5-attributable cardiopulmonary deaths would be averted by
reducing PM2.5 in census tracts with high PM2.5 concentration and low vulnerability. This smaller
number is due both to the lower probability of cardiopulmonary mortality and the lower population
in census tracts with these characteristics. Overall, these estimates suggest that reducing PM2.5 to the
levels encountered in the low exposure census tracts would avert between 19 and 95 cardiopulmonary
deaths each year, approximately 13.5% of total cardiopulmonary mortality attributable to PM2.5 in the
DMA (between 144 and 721, as shown in Table 4). (See Supplementary Materials Table S2 for greater
detail on this analysis.)

Table 4. Number of cardiopulmonary deaths averted annually by reducing PM2.5 to low in all census
tracts, by high and low vulnerability scores 1 under scenarios with 3–15% attributable risk.

Percent Attributable Risk
Low Vulnerability High Vulnerability

Low PM2.5 High PM2.5 Low PM2.5 High PM2.5

Population estimates 1,301,007 (30.3%) 657,199 (15.3%) 677,435 (15.8%) 1,659,342 (38.6%)

Cardiopulmonary Mortality Estimates
(Total) 1000 (20.8%) 633 (13.2%) 767 (16.0%) 2400 (50.0%)

Attributable to PM2.5 (3%) 30 (20.8%) 19 (13.2%) 23 (16.0%) 72 (50%)
Attributable to PM2.5 (5%) 50 (20.7%) 32 (13.3%) 39 (16.2%) 120 (49.8%)

Attributable to PM2.5 (10%) 100 (20.8%) 64 (13.3%) 77 (16.0%) 239 (49.8%)
Attributable to PM2.5 (15%) 150 (20.8%) 96 (13.3%) 116 (16.1%) 359 (49.8%)

Cardiopulmonary deaths averted
If PM2.5 moves from High to Low (3%) 4 (21.1%) 15 (78.9%)
If PM2.5 moves from High to Low (5%) 7 (21.9%) 25 (78.1%)
If PM2.5 moves from High to Low (10%) 13 (20.6%) 50 (79.4%)
If PM2.5 moves from High to Low (15%) 20 (21.1%) 75 (78.9%)

1 Low includes census tracts that were in the first and second quintiles of risk; High includes census tracts in the
third–fifth quintiles.

Census tracts with high PM2.5 concentration and population vulnerability are concentrated within
and adjacent to Detroit city, Dearborn, River Rouge, Southfield, Inkster, Taylor, and Trenton. Based on
estimates presented in Table 4, approximately 79% of the averted PM2.5-attributable cardiopulmonary
mortality would occur in census tracts with high levels of population vulnerability, and with 40% of
the population (See Figure 2).
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Cardiopulmonary Mortality Estimates 
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1000 (20.8%) 633 (13.2%) 767 (16.0%) 2400 (50.0%) 

Attributable to PM2.5 (3%) 30 (20.8%) 19 (13.2%) 23 (16.0%) 72 (50%) 
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Cardiopulmonary deaths averted 
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4. Discussion

Findings reported here indicate that, when included in models controlling for individual
demographic characteristics, census tract level indicators of exposure to PM2.5 air pollution and
indicators of population vulnerability are associated with increased likelihood of death attributable to
ischemic, cardiovascular, and cardiopulmonary causes in the DMA. Consistent with findings previously
reported in the literature [62–64], associations of PM2.5 and mortality remained significant after
accounting for population vulnerability (e.g., census tract socioeconomic status, racial composition).
While not statistically significant, our finding suggesting that adverse effects of PM2.5 on mortality
may be heightened in neighborhoods with higher levels of population vulnerability is consistent with
results reported elsewhere [63,65,66].

Estimated reductions in mortality that would be realized with reductions in PM2.5 suggest that
79% of cardiopulmonary deaths averted would occur in census tracts with high levels of population
vulnerability. These results add to a limited literature examining differential health impacts of
reductions in air pollution by neighborhood indicators of population vulnerability. In 2014, Kheirbek
and colleagues estimated health benefits associated with reductions in PM2.5 associated with cooking
fuels in New York City, and reported the greatest benefits in high poverty neighborhoods [67]. Similarly,
in 2011, Fann and colleagues [66] reported that air pollution reduction strategies that focus in areas with
more susceptible/vulnerable populations yield greater reductions in mortality and in risk inequality
compared with more traditional approaches used in regulatory frameworks.

These results have implications for efforts to reduce health inequities linked to unequal
environmental exposures. Detroit’s industrial history, combined with historical and contemporary
patterns of segregation and economic divestment from predominantly NHB and Hispanic urban
communities, have contributed to both disproportionate exposure and vulnerability for NHB and
Hispanic urban communities in the DMA [22]. Census tracts with both high PM2.5 exposure and high
population vulnerability tend to be clustered in and adjacent to major urban communities, including
areas with major industrial sources located in the southern, southwestern, and central areas of the
Detroit metropolitan area. Effects are visible at levels of PM2.5 that are below the current National
Ambient Air Quality Standards (NAAQS) level of 12 µg/m3 [68] (see Table 1), and at levels common in
many urban communities in the U.S. Focusing efforts to reduce PM2.5 pollution in the high exposure
census tracts would not only reduce population mortality, but contribute to reductions in racial,
ethnic, and socioeconomic health inequities. Such efforts could include, for example, reductions
in mobile sources of PM2.5 (e.g., reducing diesel traffic through urban residential neighborhoods);
reductions in industrial pollutants (e.g., conversion to clean sources of power such as wind and solar);
increases in green infrastructure, such as spatial or vegetative buffers between, for example, residential
neighborhoods and heavily trafficked freeways [69,70]; or permitting for air pollution emissions that
accounts for cumulative risks [70].

These analyses join similar studies [67] that illustrate the potential for using health impact
assessments to inform policy and planning decisions. Nearly 40% of DMA residents live in census
tracts with high vulnerability and high PM2.5 exposure. Residents of these census tracts experience
higher probability of cardiopulmonary mortality compared with residents of census tracts with all
other combinations of exposure and vulnerability. Assessments of differential health impacts of
reductions in PM2.5 in census tracts with differential population vulnerabilities can help inform
regulatory and land use decisions by incorporating analysis of implications for population health
and health equity. These findings join a substantial literature indicating that particulate matter is
associated with mortality (and morbidity), and that exposure to it disproportionately impacts the
health of vulnerable populations [71,72]. The finding of the significant impacts of PM2.5 exposure on
mortality despite a fairly narrow distribution of average PM2.5 exposure suggests the importance of
continued attention to the composition as well as mass levels of PM2.5 [73].
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4.1. Limitations

There are several limitations associated with this study. The models reported here examine
exposure and mortality over a single year. They are neither able to examine the impacts of long-term
exposures over the life course nor to disentangle the effects of exposure at particularly vulnerable
periods (e.g., prenatal development, early life, puberty). The focus on mortality omits substantial
contributions of both PM2.5 and social and economic vulnerabilities to morbidity throughout the life
course (e.g., asthma exacerbations, missed work days). Finally, the relatively brief period of time
covered does not allow us to disentangle, for example, the extent to which individuals with greater
health challenges may move to areas with higher exposure risks and lower socioeconomic indicators
due to, for example, loss of income through inability to work.

4.2. Strengths

These analyses also have a number of strengths. The statistical models used enable us to
separate the effects of neighborhood or environmental exposures from individual characteristics,
and to assess the independent contributions of PM2.5 exposure and population vulnerabilities at the
census tract level. The use of multilevel models combined with the spatial scale of the PM2.5-level
data (census tract level) allows us to examine variations at a relatively fine spatial scale. We are
also able to estimate the number of deaths that could be averted by focusing efforts to reduce PM2.5

in areas with high versus low population vulnerabilities, providing valuable information to aid in
decision-making processes. The use of analytical models that examine independent and joint effects
of social, economic, and environmental exposures on health contributes to the ability to examine
the implications of environmental rulemaking, policy, and planning decisions, and to inform those
decisions by quantifying their health implications.

5. Conclusions

We find significant effects of environmental exposures and population vulnerabilities, assessed
at the census tract level, on the likelihood of mortality due to ischemic heart, cardiovascular, and
cardiopulmonary disease in the Detroit metropolitan area. Disentangling the effects of vulnerability
and exposure allowed us to determine that this excess mortality disproportionately affects residents
of communities with high vulnerability scores, with the greatest benefits realized within those same
communities with reductions in PM exposure.

These findings extend a critical body of evidence documenting not only excess environmental
exposures, but also more substantial health risks associated with those exposures in vulnerable
communities, including communities of color and those with lower socioeconomic status. Combined with
previously reported research demonstrating that communities with higher vulnerability experience
heightened exposure to PM2.5, these results support the critical importance of a national research
agenda focused on examining cumulative exposure and associated health risks [38,74,75], and more
importantly, on the application of findings to focus efforts to reduce exposures in areas with the most
vulnerable populations.

Recognizing the limitations and uncertainties associated with the current science of cumulative
risk assessment, continued efforts to develop the science and apply it to analyses of risk are critical for
identifying communities that experience disproportionate risk. Paying particular attention to reducing
environmental exposures in communities already overburdened with multiple risks, combined with
efforts to reduce the social and economic vulnerabilities experienced within those communities, stand
to make important contributions to reductions in health inequities.

Supplementary Materials: The following are available online at http://www.mdpi.com/1660-4601/15/6/1209/s1.
Table S1: Ischemic Heart Disease, Cardiovascular and Cardiopulmonary Mortality Regressed on PM2.5 and
Population Vulnerability As Continuous Variables, Table S2: Number of cardiopulmonary deaths averted annually
by reducing PM2.5 to low in all census tracts, by high and low vulnerability scores* under scenarios with 3–15%
attributable risk.
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