

Community Action to Promote Healthy Environments (CAPHE)

Stuart Batterman (stuartb@umich.edu)

Funded by NIEHS Grant # RO1ES022616 and the Fred A and Barbara M. Erb Family Foundation with additional support from NIEHS Grant # P30ES017885 and NIEHS Grant #R25 ES033042

https://www.gordiehoweinternationalbridge.com/en/gallery

Air quality and health

The estimated six million children in the United States with asthma are especially vulnerable to air pollution.

https://www.epa.gov/sciencematters/links-between-air-pollution-and-childhood-asthma

Estimate of typical source contributions of volatile organic compounds (VOCs) https://www.airnow.gov/download-images/

Air quality and health

Air pollutants can cause and aggravate health problems like cancer, asthma and other respiratory diseases, and have been linked to many other health issues, e.g., adverse birth outcomes and dementia.

Air pollution causes other effects too, like acid rain, thinning of the protective ozone layer in the upper atmosphere, damage to vegetation and crops, and climate change.

What we will cover:

- Pollutants
- Health effects
- Emission sources
- What you breath ... concentrations
- National Ambient Air Quality Standards (NAAQS)
- Air Quality Index (AQI)

Pollutants

Most attention focuses on the six so-called "criteria pollutants" that have national Ambient Air Quality Standards (NAAQS), but other pollutants are also important. The US Clean Act defines 6 criteria pollutants and 189 different hazardous air pollutants. The main types of air pollutants are listed below:

Criteria pollutants

Sulfur dioxide (SO₂), nitrogen dioxide (NO₂), lead, ozone (O₃), carbon monoxide (CO), particulate matter (PM_{2.5}, PM₁₀)

Toxic pollutants (toxics, hazardous air pollutants)

- Local benzene, hydrogen sulfide, formaldehyde, diesel exhaust
- **Regional** mercury, PCBs, PBDEs
- Global Chlorofluorocarbons (CFCs)

Greenhouse gas pollutants (GHGs, short-lived are toxic)

- Long lived carbon dioxide (CO₂), nitrous oxide, halocarbons (N₂O, F11, F12, etc)
- Medium lived methane (CH₄)
- Short lived carbon monoxide (CO), non-methane VOC (NMVOCs)

Indoor pollutants, occupational pollutants

Health effects

Health effects for the six criteria pollutants (ozone, lead, nitrogen oxide, particulate matter, carbon monoxide, sulfur dioxide) are shown in the table – from US EPA's Integrated Science Assessments.

- Air pollution is one of the top environmental factors affecting health.
- Globally, about 7 million people die each year from exposure to both outdoor and indoor air pollutants, mostly from cardiovascular disease and chronic respiratory disease associated with exposure to particulate matter (PM2.5).
- PM_{2.5} and ozone tend to be the most widespread and damaging pollutants.
- Thousands of epidemiological and toxicological studies have investigated the link between exposure to air pollutant and health effects.
- These studies also form the basis of air quality standards.

Table from: https://caphedetroit.sph.umich.edu/wp-content/uploads/2016/10/Resource-Manual-3.0-Air-Quality-Health-Environmental-Justice-Website-Version-10-4-16.pdf

Respiratory Effects

Lung diseases (COPD, chronic bronchitis, empl and/or cancer)

Asthma incidences, attacks, hospitalizations, a aggravations

Aggravation of bronchitis

Impaired lung growth

Decreased lung function

Difficulty breathing

Lung irritation (airway hyper responsiveness a inflammation)

Lung related emergency visits

Irritation of the nose and throat; coughing

Cardiovascular Effects

Coronary heart disease

Heart attacks

Hypertension or increases in blood pressure Reduce oxygen carrying capacity of the blood

Aggravation of existing heart disease

Reproductive Effects

Decreased fertility (men and women)

Birth Outcomes & Childhood Developmen

Adverse birth outcomes (premature birth, low weight, or miscarriage)

Brain damage and other birth defects

Behavioral and emotional problems

Cognitive impairments

Other

Cancer

Increased risk of premature death

Fever, convulsions, dizziness

Headaches, nausea, vomiting

Inhibition of thyroid functions

Kidney damage

Loss of Smell

Visual impairment

Cognitive decrements in adults

Immune system impairments

	Ozone	Lead	NOx	PM2.5	со	SO2
nysema,	х		х			х
nd	х			х		
	х					
				х		
			х	х		
	х			х	Х	Х
nd			х	х		х
	х		х			
	х			х		Х
		Х				
				Х		
		X		х	~	
		х			X	v
					~	~
	_	v			_	v
.+		^				^
hirth	_				_	
Dirti	х	х	х	х	х	
	х	х				
		Х				
		Х			Х	
		Х		х		
	х	Х	х	х	Х	Х
						X
		Х			х	X
		×				
		~				х
					х	
		Х			Х	
		Х				

Whose is most affected?

Health burden of ambient air pollution in Wayne County Michigan: 7.3% of annual deaths due to criteria pollutants and air toxics

Susceptibility

- Both young and old
- Individuals with pre-existing disease, including obesity, diabetes, and asthma
- Asthma prevalence among children: 11.3%
 - Hospitalizations and deaths 2x and 3x the state rates

Vulnerability

- **39% of Detroit residents** live below the poverty line
- - 85% Black
- **Exposed to multiple point**, area and mobile sources
- many trades

: SEMCOG (2013): US Ce

Largely minority population 7% Hispanic or Latino **Occupational exposure in**

Emission sources

Air pollution has many sources. Some sources are obvious – like coal-fired boilers, municipal waste incinerators, automobiles, trucks, and buses. Others are not so obvious – like gasoline stations; dry cleaners; outboard boating equipment; lawn, garden, farm, and construction equipment engines; certain paints, coatings, and varnishes; and various household products.

Emission sources are classified into the following types:

- **Point sources** typically industry with smokestacks power plants, boilers, incinerators
- On-road mobile sources cars, trucks, buses
- **Off-road mobile sources** trains, ships, construction equipment
- **Area sources** construction sites, bulk storage areas, smaller building boilers/furnaces
- **Event sources** wildland fires, structure fires, explosions
- **Regional sources** from distant sources, called background
- **Secondary sources** produced from atmospheric chemistry

Scale of air pollution

Hyperlocal \rightarrow

Local \rightarrow Urban

 \rightarrow

Regional \rightarrow Continental \rightarrow Global

Modeled increases in SO₂ around Zug Island, maximum 1 hour level. J. Haywood, Mich EGLE, 2021

Satellite image of Canadian wildfire smoke moving east, late June 2023. https://earthobservatory.nasa.gov/

Worst year for ozone "hole" (1994) from NASA Tropomi satellite.

https://earthobservatory.nasa.gov/world-ofchange/Ozone/show-all

What you breath - concentrations and AQI

In air, pollutants are measured as a **concentration**:

- For particulate matter like $PM_{2.5}$ concentrations are measured as **micrograms** per cubic meter or µg/m³
- \triangleright For gases like SO₂ or O₃ concentrations can be measured as either **micrograms** per cubic meter, parts per million (ppm) or parts per billion (ppb)

This differs from emission rates, which are expressed as **tons per year** (t/yr) or grams per second (g/s)

Air Quality Index or AQI helps account for the different concentration scales

- AQI = 100 corresponds to short-term air quality standard:
 - 35 μ g/m³ for PM₂₅
 - 70 ppb for O₃
- Must use appropriate averaging time
- AQI typically considers only two pollutants (O_3 and PM_{25}) and takes the maximum

Daily AQI Color	Levels of Concern	Values of Index	Description of Air Qu
Green	Good	0 to 50	Air quality is satisfact
Yellow	Moderate	51 to 100	Air quality is acceptal who are unusually se
Orange	Unhealthy for Sensitive Groups	101 to 150	Members of sensitive to be affected.
Red	Unhealthy	151 to 200	Some members of th groups may experien
Purple	Very Unhealthy	201 to 300	Health alert: The risk
Maroon	Hazardous	301 and higher	Health warning of en

ality

pry, and air pollution poses little or no risk.

ble. However, there may be a risk for some people, particularly those insitive to air pollution.

groups may experience health effects. The general public is less likely

e general public may experience health effects; members of sensitive ce more serious health effects.

of health effects is increased for everyone.

ergency conditions: everyone is more likely to be affected.

https://www.airnow.gov/

Try it!

Enter **ZIP Code or City** Click on **monitors near me** Select **PM** or ozone Select **monitor** (circle) Select **Plot Data** (shows last few hours) Select **Loops** (top menu) for hour-by-hour

All is recent data, using AQI and ozone and PM, displayed using color coding

Select Archive for past data (top menu) Set archive date to July 25, 2023

Contours (left menu) – can select pollutant

Air quality standards

The National Ambient Air Quality Standards (NAAQS) apply to the six criteria pollutants. These set maximum short- and long-term levels designed to protect health. Legal requirement, enforced using monitoring and modeling. Applies to all locations outside the fence line

Pollutant		Primary/ Secondary	Averaging Time	Level	Form	
Carbon Monovido (CO)		Primary	8 hours	9 ppm	Not to	
	<u>e (00)</u>		1 hour	35 ppm		
Lead (Pb)		primary and secondary	nary and secondary Rolling 3 month average		Not to	
<u>Nitrogen Dioxide (NO₂)</u>		Primary	1 hour	100 ppb	98th pe concer	
		primary and secondary	1 year	53 ppb ⁽²⁾	Annual	
Ozone (O ₃)		primary and secondary	8 hours	0.070 ppm ⁽³⁾	Annual concer	
	PM _{2.5}	Primary	1 year	12.0 µg/m ³ 🧹	annual	
Particle		Secondary	1 year	15.0 µg/m ³	annual	
Pollution (PM)		primary and secondary	24 hours	35 µg/m³	98th pe	
	PM ₁₀ primary and secondary		24 hours	150 µg/m ³	Not to on ave	
<u>Sulfur Dioxide (SO₂)</u>		Primary	1 hour	75 ppb (4)	99th pe concer	
		Secondary	3 hours	0.5 ppm	Not to	

Questions and key points

Which pollutants cause the greatest threats to human health in the US? PM_{25} and ozone

Why?

More people affected by these two criteria pollutants PM_{2.5} can be inhaled deep into the lungs and cause many health impacts Ozone affects lung health and asthma Large areas affected, often with levels near or above standards Scientific evidence suggests the standards should be strengthened

Questions?

