

Community Action to Promote Healthy Environments (CAPHE)

Stuart Batterman (stuartb@umich.edu)

Funded by NIEHS Grant # RO1ES022616 and the Fred A and Barbara M. Erb Family Foundation with additional support from NIEHS Grant # P30ES017885 and NIEHS Grant #R25 ES033042

Air quality monitoring

Air quality monitoring involves the collection and analysis of measurements to assess the status of the air

What we will cover:

- Importance of air quality
- Types, strategies, issues
- Regulatory monitors
- Sensors

Importance of air quality monitoring

If you don't measure it, you can't manage it!

- **1.** Determine exposure and inform mitigation actions to stay safe
- **2.** Determine compliance with standards
 - Ambient air quality monitoring is required under Titles 1 and 3 and sometimes as a permit condition
- 3. Identify impact of specific emission sources
 - "Fenceline" monitoring at industry or highways Measure background or upwind levels
- 4. Evaluate whether emission controls are working
- 5. Trend and impact analyses
 - Impact or burden analyses: ecological and human health, and environmental justice
- 6. Research

Epidemiological studies, dose-response determinations, standard setting Model validation for dispersion and apportionment models

Types of air quality monitoring and challenges

Types of air monitoring

- Ambient neighborhood to regional and global scales
- Personal breathing zone
- **Indoor air** buildings, HVAC, vehicle cabins, etc.
- Mobile mapping
- Source stack testing
- Remote sensing satellite

Monitoring air quality poses unique challenges

- Concentrations can vary greatly in space -- "microenvironments"
- Concentrations can change rapidly in time
- People have unique activity patterns
- Must quantity both average and high-end levels in all types of weather
- Some pollutants are technically difficult and expensive to monitor accurately

Source: US EPA. The Plain English Guide to the Clean Air Act. Office of Air Quality Planning and Standards. P.4. 2007. EPA.gov

Monitoring under the Clean Air Act & Amendments

Title I. Attainment and maintenance of National Ambient Air Quality Standards (NAAQS) \triangleright Applies to criteria pollutants: CO, O₃, PM_{2,5}, SO₂, NO₂, Pb. Requires minimum number of monitoring sites, depending on size

Title III. Toxics (also called Hazardous Air Pollutants) – 189 different pollutants or mixtures

Reference monitoring methods are used for NAAQS pollutants with mandatory methods and QA/QC. Only reference or approved equivalent method can be used.

EPA monitoring networks (1/2)

Photochemical Assessment Monitoring Stations (PAMS)

- Enhanced monitoring of O_3 , NO_x , and 56 VOCs
- **Transect approach** with sites for:
 - 1. Upwind/background concentrations
 - 2. O_3 precursors
 - 3. Maximum O_3 concentration
 - 4. Extreme downwind site for transport

Particulate Matter (PM) Networks

- Filter-based (24-hr)PM_{2.5}, continuous PM_{2.5}
- Chemical Speciation Network (CSN)
- State and Local Air Monitoring Stations (SLAMS)
- Interagency Monitoring of Protected Visual Environments (IMPROVE)

National Core Network (NCore)

- For emission strategies, health assessments, etc,
- Multipollutant including speciated PM_{2.5}

EPA monitoring networks (2/2)

Near-road network

- For traffic-related air pollutants (TRAP)
- Within 50 m of major roads
- NO2, CO, sometimes PM, EC/OC, Aethalometers

National Air Toxics Trends Stations

Long-term monitoring to assess trends & emission controls

Lead (Pb) Monitoring Network

On PM_{2.5}, PM₁₀ and Total Suspended Particulate (TSP)

Community Scale Air Toxics and vulnerable populations

Clean Air Status and Trends Network (CASTNET)

- National Park Service and other partners
- For acid deposition and ecological impacts
- ► Includes SO_2 , HNO_3 , SO_2^{-4} , NH_4 , O_3 , deposition

EGLE & Marathon monitoring sites; major sources in SW Detroit

AIR EMISSION SOURCES[†]

O Praxair **2 DTE River Rouge** SFritz Products Buckeye Terminals River Rouge GEES Coke Battery **GUS Steel Great Lakes Works ODTE** Delray Waterfront Petroleum O Carmeuse Lime Dunited States Gypsum **①** Great Lakes Water Authority Treatment Fabricon Products Buckeye Terminals Detroit **O**Saint Mary's Cement Great Lakes Petroleum Marathon Petroleum Detroit Salt Cadillac Asphalt Products Sunoco River Rouge @Edw C Levy Co Plant 6 Darling Ingredients 22 AK Steel Dearborn ³Dearborn Industrial Generation Pord Motor Company Rouge Complex 25 Xcel Steel Pickling Bedw C Levy Co Plant 1 *†These facilities reported 2016 air emissions* to the Michigan Air Emission Reporting

System (MAERS).

Source: Michigan EGLE

Monitoring sites in SE Michigan

https://www.michigan.gov/egle/about/organization/airquality/air-monitoring (scroll down)

https://www.michigan.gov/egle/-

/media/Project/Websites/egle/Documents/Reports/AQD/monitoring/annual-reports/2022-air-quality-annual-

report.pdf?rev=bb4ef053f7b74fbebd79c4aac67c6975&hash=DABA1681F93DF43C68BD0BF5ABC F7685

- $\sqrt{}$ = Data Collected
- # = 9 additional metals sampled: Ba, Be, Cr, Co, Cu, Fe, Mo, V, Zn
- F = FEM continuous $PM_{2.5}$ monitor
- T = TEOM (non-FEM) continuous $PM_{2.5}$ monitor
- * = Trace monitor
- ^ = Continuous PM₁₀ monitor
- A = Aethalometer monitor

	Airs ID	Site Name	8	NO2	Trace NO _y	03	PM10	PM _{2.5} FRM	PM _{2.5} Continuous	PM _{2.5} Speciation	SO ₂	VOC	PAHs	Carbonyls	Trace Metals (As, Cd, Mn, Ni, Pb)	Wind Speed & Direction, Temp.	Relative Humidity	Solar Radiation	Barometric Pressure
	260910007	Tecumseh				\checkmark			√F							\checkmark			\checkmark
	260990009	New Haven				\checkmark			√F					٨		\checkmark	٨	\checkmark	
	260991003	Warren				\checkmark													
	261250001	Oak Park				\checkmark		\checkmark								\checkmark			
	261470005	Port Huron				\checkmark			√F		\checkmark					\checkmark			
	261470031	Port Huron-Rural St.													\checkmark				
	261610008	Ypsilanti				\checkmark		\checkmark	√F							\checkmark			\checkmark
	261630001	Allen Park	√*		\checkmark	\checkmark	√^	V	√F	√+ A	√*					\checkmark	\checkmark		\checkmark
	261630005	River Rouge												\checkmark	\checkmark	\checkmark			
	261630015	Detroit-SW ⁵		\checkmark			\checkmark	\checkmark	√F	√+ A	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark		\checkmark
	261630019	Detroit-E 7 Mile		\checkmark	\checkmark	\checkmark		\checkmark				\checkmark		\checkmark		\checkmark	\checkmark		\checkmark
	261630033	Dearborn					√^	\checkmark	√T	√+ A		\checkmark	\checkmark	\checkmark	√#	\checkmark	\checkmark		\checkmark
	261630093	Eliza Howell-NR	\checkmark	\checkmark					√F							\checkmark			
	261630097	New Mount Hermon (NMH) 48217							√F		\checkmark				\checkmark				
n	261630098	Detroit Police 4 th Precinct (DP4th)	\checkmark	\checkmark					√F	Α	\checkmark				\checkmark				
	261630099	Trinity	\checkmark	\checkmark					√F	Α	\checkmark				\checkmark	\checkmark			
	261630100	Military Park		\checkmark					√F	Α	\checkmark				\checkmark				

Choose your monitor & pollutant

https://www.michigan.gov/egle/public/learn/air-quality

Scroll way down to get to menu Or http://www.deqmiair.org/ How's my Air Quality?

Here are some tools to help you better understand the air quality around you including when wildfires are burning. These include a map with color-coded dots showing real-time air quality information. Another map shows Michigan's air monitors and what they measure. Helpful links to air sensor information are also listed below.

Your Health and Wildfire Smoke

Protect Yourself from Wildfire Smoke

Real-Time Air Quality Information

EPA's Air Now - Air Quality Index

PDF 2023 Air Quality Action Days

Past Air Quality Action Days

Interactive air monitoring map

Citizen Science - Air Sensors

PurpleAir: Air Sensor information

Site: Allen Park

Hourly air quality measurements*

*Displayed values are end-hour. All data are preliminary and subject to validation.

PM2.5

Alle

Select Map: Detroit Area Go Click on monitors near me Select PM or ozone Select Monitor (circle) Select Plot Data (shows last few hours)

Can change date using $\leq \leq 10day \geq \geq 1/14/2024$ Go Try July 25, 2023 Go

Can change site at top right: try **Allen Park Go** try **E7 Mile Go**

AP & E7M sites have ozone and other pollutants

https://www.michigan.gov/egle/public/learn/air-quality

Scroll way down to get to menu

How's my Air Quality?

Here are some tools to help you better understand the air quality around you including when wildfires are burning. These include a map with color-coded dots showing real-time air quality information. Another map shows Michigan's air monitors and what they measure. Helpful links to air sensor information are also listed below.

Your Health and Wildfire Smoke

Protect Yourself from Wildfire Smoke
Real-Time Air Quality Information
EPA's Air Now - Air Quality Index
2023 Air Quality Action Days

Past Air Quality Action Days

Interactive air monitoring map

Citizen Science - Air Sensors

PurpleAir: Air Sensor information

Select site (purple pin) to get some site information, photo of site and hourly monitoring data (MIAIR)

Select Legend, Basemap, More

EPA monitoring sites in US

US EPA data are generally easily available (AIRNOW)

Lead - Active

NO2 - Active

Ozone - Active

PM2.5 - Active

Source: US EPA GeoPlatform. AirNow.gov

https://www.airnow.gov/

MAPS & DataOr http://www.deqmiair.org/

National Maps

Questions and key points

Why are EPA/state monitoring networks important?

Determine compliance with the National Ambient Air Quality Standards (NAAQS) Measure background, population and maximum impact sites Consistent, well established, and high quality methods allow analysis of trends

What are the biggest limitations of these networks? Monitoring sites are sparse in most areas and may not reflect exposure given an individual's movement and spatial variation Only a subset of pollutants are measured

Questions?

Air quality sensors

Small, direct reading, and inexpensive devices to measure air quality

- Outdoor sensors: roof/wall mount, some with WiFi, phone modem, solar power
- Indoor/desktop sensors
- Personal sensors: small, easy to transport, unobtrusive. Some have built-in GPS, accelerometer, Bluetooth to phone

What do they measure?

- PM light scattering or particle counts
- Gases: O₃, CO, NO_x, SO₂ metal oxide or electrochemical sensors
- Carbon dioxide (CO₂) IR absorption
- VOCs photoionization or IR sensors

Need for sensors

Data gaps identified by community

- Sees/smells dust, odors, smoke, visible emissions, traffic, fires
- No nearby monitors
- Available data does not reflect an individual's (perceived) risk
- Existing monitors do not track pollutant from specific sources

Obtain "hyperlocal" information

- Protect public health
- Get timely and relevant information
- Build awareness & engage public, decision makers
- **Build STEM skill**
- Do community science Scientific investigations by amateur or non-professional scientists

Sensor on backpack

School bus

Using Flow2 (PM, NO₂, VOCs, O₃) with "Real Time Geospatial Data Viewer" (RETIGO)

School yard

Backyar d fire pit

Example of outdoor sensor – Purple Air

- Real time map display and historical data
- \triangleright Dual laser counters for PM₁, PM_{2.5}, PM₁₀
- Temperature, humidity, pressure sensor
- Fugitive dust particle releases by wind entrainment and resuspension

https://map.purpleair.com

On October 4th, 2020, 11:59:33 PM EDT **10 Minute Average US**

Average US EPA PM2.5 AQI is now

151-200: Everyone may begin to experience health effects if they are exposed for 24 hours; members of sensitive groups may experience more serious health effects.

Now	10 Min	30 Min	1 hr	6 hr	1 Day	Week			
139	157	141	111	76	69	55			
0									

Sensor: Courage

▲ B √100% (PA-II) 6.01 Get This Widget

Example of indoor sensor - IQAir

- Built in WiFi for logging to the cloud
- Real time map display and historical data
- Laser counter for PM
- Temperature, humidity, pressure sensor
- \triangleright CO₂
- Forecasts
- Health recommendations

Source: IQAir.com

Pros and cons of sensors

Next-gen samplers with tremendous potential

- Sensors provide complementary approach to fixed site regulatory monitors
- Community is excited, educated and empowered
- Becoming integrated into environmental health, health care, community science

Data quality

- Quality assurance/quality control (detection limits, accuracy, interferences, drift, failures)
- Reasonably reliable measurements for PM & CO2, but other pollutants may be questionable

Siting representativeness

- Site may not be spatially representative
- Unknown and unspecific monitoring objectives

Application interpretation issues

- Incorrect pollutants and averaging times typically display instantaneous levels not averages
- Can be hard to compare with traditional networks site specific calibration needed
- False positives and false negatives

Differences between sensors and regulatory monitors

	Reference Monitors	Low-Cost Sens
Typical Purchase Cost	\$15,000 to \$40,000 (USD)	\$200 to \$5,000
Staff Training	Highly trained technical staff.	Little or no trai May need more
Operating Expense	Expensive – shelter, technical staff, maintenance, repair, quality assurance.	May be less ex streaming, data
Siting Location	Fixed Location. (Climate controlled building / trailer needed)	More portable. Siting can be e more tricky bee
Data Quality	Known and consistent quality in a variety of conditions.	Unknown. Can different weath pollution envir
Operating Lifetime	10+ Years (calibrated and operated to maintain accuracy).	Short (1 year) o sensitive over
Regulatory Monitoring?	Yes	

Source: A. Clements et al. EPA Tools and Resources Webinar FRMs/FEMs and Sensors: Complementary Approaches for Determining Ambient Air

sors	
(USD)	

ning to operate. e training to interpret data.

pensive – replacement, data a management.

May require weather shielding. asier due to lower flow rates but cause of data streaming.

vary from sensor to sensor, in her conditions, and in different onments.

or Unknown (may become less time).

No

ary Approaches for Determining Ambient Air Quality. P. 13. 2019. EPA.gov

Questions and key points

How might you use air quality sensors?

Hyperlocal monitoring of $PM_{2.5}$ and possibly other pollutants at:

- critical environments: schools, homes, hospitals, elsewhere
- near emission sources: roads and industry
- Track plumes from fires and other emission sources Compare indoor, personal and outdoor exposure Many more

Questions?

ants at: sewhere